MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. S31060 Stainless Steel

Both EN 1.7380 steel and S31060 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19 to 20
46
Fatigue Strength, MPa 200 to 230
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
78
Shear Strength, MPa 330 to 350
480
Tensile Strength: Ultimate (UTS), MPa 540 to 550
680
Tensile Strength: Yield (Proof), MPa 290 to 330
310

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 460
1080
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
3.4
Embodied Energy, MJ/kg 23
48
Embodied Water, L/kg 59
170

Common Calculations

PREN (Pitting Resistance) 5.6
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
260
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 15 to 16
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.080 to 0.14
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 2.0 to 2.5
22 to 24
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 96.6
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
10 to 12.5
Nitrogen (N), % 0 to 0.012
0.18 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030