MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. EN 1.4980 Stainless Steel

Both EN 1.7383 steel and EN 1.4980 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 23
17
Fatigue Strength, MPa 210 to 270
410
Impact Strength: V-Notched Charpy, J 38
57
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
75
Shear Strength, MPa 350 to 380
630
Tensile Strength: Ultimate (UTS), MPa 560 to 610
1030
Tensile Strength: Yield (Proof), MPa 300 to 400
680

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
920
Melting Completion (Liquidus), °C 1470
1430
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
26
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
6.0
Embodied Energy, MJ/kg 23
87
Embodied Water, L/kg 59
170

Common Calculations

PREN (Pitting Resistance) 5.6
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 22
36
Strength to Weight: Bending, points 19 to 20
28
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 16 to 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0.080 to 0.15
0.030 to 0.080
Chromium (Cr), % 2.0 to 2.5
13.5 to 16
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.3 to 96.6
49.2 to 58.5
Manganese (Mn), % 0.4 to 0.8
1.0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
1.0 to 1.5
Nickel (Ni), % 0 to 0.3
24 to 27
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5