MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C53800 Bronze

EN 1.7383 steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 23
2.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Shear Strength, MPa 350 to 380
470
Tensile Strength: Ultimate (UTS), MPa 560 to 610
830
Tensile Strength: Yield (Proof), MPa 300 to 400
660

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 460
160
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1430
800
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 39
61
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
37
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
3.9
Embodied Energy, MJ/kg 23
64
Embodied Water, L/kg 59
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
18
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 22
26
Strength to Weight: Bending, points 19 to 20
22
Thermal Diffusivity, mm2/s 11
19
Thermal Shock Resistance, points 16 to 18
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
85.1 to 86.5
Iron (Fe), % 94.3 to 96.6
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0.4 to 0.8
0 to 0.060
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2