MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C63020 Bronze

EN 1.7383 steel belongs to the iron alloys classification, while C63020 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C63020 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20 to 23
6.8
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
44
Shear Strength, MPa 350 to 380
600
Tensile Strength: Ultimate (UTS), MPa 560 to 610
1020
Tensile Strength: Yield (Proof), MPa 300 to 400
740

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Maximum Temperature: Mechanical, °C 460
230
Melting Completion (Liquidus), °C 1470
1070
Melting Onset (Solidus), °C 1430
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 23
58
Embodied Water, L/kg 59
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
2320
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20 to 22
34
Strength to Weight: Bending, points 19 to 20
27
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 16 to 18
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
10 to 11
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.3
74.7 to 81.8
Iron (Fe), % 94.3 to 96.6
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 0.8
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
4.2 to 6.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5