MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C82500 Copper

EN 1.7386 steel belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18 to 21
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 550 to 670
550 to 1100
Tensile Strength: Yield (Proof), MPa 240 to 440
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 600
280
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 10
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.0
10
Embodied Energy, MJ/kg 28
160
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
400 to 4000
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
18 to 35
Strength to Weight: Bending, points 19 to 22
17 to 27
Thermal Diffusivity, mm2/s 6.9
38
Thermal Shock Resistance, points 15 to 18
19 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0 to 0.3
95.3 to 97.8
Iron (Fe), % 86.8 to 90.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5