MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. C82800 Copper

EN 1.7710 steel belongs to the iron alloys classification, while C82800 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 11
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
670 to 1140
Tensile Strength: Yield (Proof), MPa 800 to 1060
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 440
310
Melting Completion (Liquidus), °C 1470
930
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
120
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
18
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
19

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.2
12
Embodied Energy, MJ/kg 30
190
Embodied Water, L/kg 57
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
590 to 4080
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 38
21 to 36
Strength to Weight: Bending, points 27 to 30
20 to 28
Thermal Diffusivity, mm2/s 11
36
Thermal Shock Resistance, points 27 to 31
23 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
94.6 to 97.2
Iron (Fe), % 95.1 to 97
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5

Comparable Variants