MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. C84000 Brass

EN 1.7710 steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 11
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
250
Tensile Strength: Yield (Proof), MPa 800 to 1060
140

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1470
1040
Melting Onset (Solidus), °C 1430
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
72
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.2
3.0
Embodied Energy, MJ/kg 30
49
Embodied Water, L/kg 57
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 38
8.2
Strength to Weight: Bending, points 27 to 30
10
Thermal Diffusivity, mm2/s 11
22
Thermal Shock Resistance, points 27 to 31
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 95.1 to 97
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.6 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7