MakeItFrom.com
Menu (ESC)

EN 1.7715 Steel vs. EN 1.4028 Stainless Steel

Both EN 1.7715 steel and EN 1.4028 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7715 steel and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
11 to 17
Fatigue Strength, MPa 240
230 to 400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 340
410 to 550
Tensile Strength: Ultimate (UTS), MPa 540
660 to 930
Tensile Strength: Yield (Proof), MPa 340
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
760
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.2
1.9
Embodied Energy, MJ/kg 30
27
Embodied Water, L/kg 52
100

Common Calculations

PREN (Pitting Resistance) 2.4
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 320
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
24 to 33
Strength to Weight: Bending, points 19
22 to 27
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 16
23 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.1 to 0.15
0.26 to 0.35
Chromium (Cr), % 0.3 to 0.6
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.5 to 98.3
83.1 to 87.7
Manganese (Mn), % 0.4 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.5 to 0.7
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0.22 to 0.28
0