MakeItFrom.com
Menu (ESC)

EN 1.7725 Steel vs. C96200 Copper-nickel

EN 1.7725 steel belongs to the iron alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7725 steel and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 14
23
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 830 to 1000
350
Tensile Strength: Yield (Proof), MPa 610 to 860
190

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 440
220
Melting Completion (Liquidus), °C 1460
1150
Melting Onset (Solidus), °C 1420
1100
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
45
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
3.8
Embodied Energy, MJ/kg 24
58
Embodied Water, L/kg 54
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 130
68
Resilience: Unit (Modulus of Resilience), kJ/m3 980 to 1940
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 29 to 35
11
Strength to Weight: Bending, points 25 to 28
13
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 24 to 29
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.27 to 0.34
0 to 0.1
Chromium (Cr), % 1.3 to 1.7
0
Copper (Cu), % 0
83.6 to 90
Iron (Fe), % 95.7 to 97.5
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.6 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.5