MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.0411 Steel

Both EN 1.7767 steel and EN 1.0411 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
12 to 26
Fatigue Strength, MPa 320 to 340
200 to 320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420 to 430
300 to 350
Tensile Strength: Ultimate (UTS), MPa 670 to 690
420 to 570
Tensile Strength: Yield (Proof), MPa 460 to 500
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 64
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
190 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
15 to 20
Strength to Weight: Bending, points 22
16 to 20
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19 to 20
13 to 18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.1 to 0.15
0.18 to 0.22
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
98.7 to 99.1
Manganese (Mn), % 0.3 to 0.6
0.7 to 0.9
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0