MakeItFrom.com
Menu (ESC)

EN 1.8151 Steel vs. A206.0 Aluminum

EN 1.8151 steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8151 steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 540
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 670 to 1940
390 to 440

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 50
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.8
8.0
Embodied Energy, MJ/kg 25
150
Embodied Water, L/kg 49
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24 to 70
36 to 41
Strength to Weight: Bending, points 22 to 45
39 to 43
Thermal Diffusivity, mm2/s 14
48
Thermal Shock Resistance, points 20 to 58
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0.4 to 0.5
0
Chromium (Cr), % 0.4 to 0.8
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 95.9 to 97.2
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.6 to 0.9
0 to 0.2
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.3 to 1.7
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Vanadium (V), % 0.1 to 0.2
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15