MakeItFrom.com
Menu (ESC)

EN 1.8153 Steel vs. Grade CU5MCuC Nickel

EN 1.8153 steel belongs to the iron alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is EN 1.8153 steel and the bottom bar is grade CU5MCuC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 670 to 2040
580

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 410
980
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
45
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 1.8
7.7
Embodied Energy, MJ/kg 25
110
Embodied Water, L/kg 48
230

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 74
20
Strength to Weight: Bending, points 22 to 46
19
Thermal Shock Resistance, points 20 to 62
16

Alloy Composition

Carbon (C), % 0.56 to 0.64
0 to 0.050
Chromium (Cr), % 0.2 to 0.4
19.5 to 23.5
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 95.7 to 96.9
22.2 to 37.9
Manganese (Mn), % 0.7 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 44
Niobium (Nb), % 0
0.6 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 1.5 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0.1 to 0.2
0