MakeItFrom.com
Menu (ESC)

EN 1.8515 Steel vs. C66200 Brass

EN 1.8515 steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8515 steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
8.0 to 15
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 680
270 to 300
Tensile Strength: Ultimate (UTS), MPa 1130
450 to 520
Tensile Strength: Yield (Proof), MPa 940
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 470
180
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
36

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 22
43
Embodied Water, L/kg 60
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 2310
760 to 1030
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 40
14 to 17
Strength to Weight: Bending, points 31
15 to 16
Thermal Diffusivity, mm2/s 11
45
Thermal Shock Resistance, points 33
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.28 to 0.35
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 94.7 to 96.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 0 to 0.3
0.3 to 1.0
Phosphorus (P), % 0 to 0.025
0.050 to 0.2
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0.2 to 0.7
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5