MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. ASTM Grade LCA Steel

Both EN 1.8870 steel and ASTM grade LCA steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
27
Fatigue Strength, MPa 310
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 610
500
Tensile Strength: Yield (Proof), MPa 450
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
19
Embodied Water, L/kg 50
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 530
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 18
16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.25
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 95.1 to 100
96.9 to 100
Manganese (Mn), % 0 to 1.7
0 to 0.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 1.0