MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. ACI-ASTM CD3MN Steel

Both EN 1.8881 steel and ACI-ASTM CD3MN steel are iron alloys. They have 71% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
29
Fatigue Strength, MPa 460
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 830
710
Tensile Strength: Yield (Proof), MPa 710
460

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 420
1060
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.6
Embodied Energy, MJ/kg 26
50
Embodied Water, L/kg 54
160

Common Calculations

PREN (Pitting Resistance) 2.0
35
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 24
20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
21 to 23.5
Copper (Cu), % 0 to 0.3
0 to 1.0
Iron (Fe), % 91.9 to 100
62.6 to 71.9
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
2.5 to 3.5
Nickel (Ni), % 0 to 2.5
4.5 to 6.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0.1 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0