MakeItFrom.com
Menu (ESC)

EN 1.8903 Steel vs. C99600 Bronze

EN 1.8903 steel belongs to the iron alloys classification, while C99600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.8903 steel and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 19
27 to 34
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
56
Tensile Strength: Ultimate (UTS), MPa 630
560
Tensile Strength: Yield (Proof), MPa 480
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
22
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
3.2
Embodied Energy, MJ/kg 24
51
Embodied Water, L/kg 51
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 620
210 to 310
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 18
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.015
1.0 to 2.8
Carbon (C), % 0 to 0.22
0 to 0.050
Chromium (Cr), % 0 to 0.35
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.6
50.8 to 60
Iron (Fe), % 95 to 99.05
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 1.8
39 to 45
Molybdenum (Mo), % 0 to 0.13
0
Nickel (Ni), % 0 to 0.85
0 to 0.2
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.65
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.22
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3