MakeItFrom.com
Menu (ESC)

EN 1.8935 Steel vs. EN 1.0535 Steel

Both EN 1.8935 steel and EN 1.0535 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8935 steel and the bottom bar is EN 1.0535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
12
Fatigue Strength, MPa 330
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 640
690
Tensile Strength: Yield (Proof), MPa 490
340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 24
19
Embodied Water, L/kg 51
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
69
Resilience: Unit (Modulus of Resilience), kJ/m3 640
310
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0.52 to 0.6
Chromium (Cr), % 0 to 0.3
0 to 0.4
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
97.1 to 98.9
Manganese (Mn), % 1.1 to 1.7
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0 to 0.8
0 to 0.4
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0