MakeItFrom.com
Menu (ESC)

EN 1.8935 Steel vs. S30530 Stainless Steel

Both EN 1.8935 steel and S30530 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8935 steel and the bottom bar is S30530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
46
Fatigue Strength, MPa 330
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 400
410
Tensile Strength: Ultimate (UTS), MPa 640
590
Tensile Strength: Yield (Proof), MPa 490
230

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
970
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 24
48
Embodied Water, L/kg 51
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 640
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 12
4.1
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
17 to 20.5
Copper (Cu), % 0 to 0.7
0.75 to 3.5
Iron (Fe), % 95.2 to 98.9
58.4 to 72.5
Manganese (Mn), % 1.1 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
0.75 to 1.5
Nickel (Ni), % 0 to 0.8
8.5 to 11.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.6
0.5 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0