MakeItFrom.com
Menu (ESC)

EN 2.4632 Nickel vs. C19100 Copper

EN 2.4632 nickel belongs to the nickel alloys classification, while C19100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4632 nickel and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
17 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 770
170 to 330
Tensile Strength: Ultimate (UTS), MPa 1250
250 to 630
Tensile Strength: Yield (Proof), MPa 780
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1340
1080
Melting Onset (Solidus), °C 1290
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
250
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
55
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
56

Otherwise Unclassified Properties

Base Metal Price, % relative 75
33
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1570
24 to 1310
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 42
7.7 to 20
Strength to Weight: Bending, points 31
9.9 to 18
Thermal Diffusivity, mm2/s 3.3
73
Thermal Shock Resistance, points 39
8.9 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 2.0
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 15 to 21
0
Copper (Cu), % 0 to 0.2
96.5 to 98.6
Iron (Fe), % 0 to 1.5
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 49 to 64
0.9 to 1.3
Phosphorus (P), % 0 to 0.020
0.15 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.35 to 0.6
Titanium (Ti), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5