MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. 5021 Aluminum

EN 2.4642 nickel belongs to the nickel alloys classification, while 5021 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is 5021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.1 to 3.4
Fatigue Strength, MPa 200
85 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 450
170
Tensile Strength: Ultimate (UTS), MPa 670
300 to 310
Tensile Strength: Yield (Proof), MPa 270
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.6
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
3.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 180
440 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 23
30 to 32
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 3.1
57
Thermal Shock Resistance, points 18
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
95.2 to 97.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.15
Copper (Cu), % 0 to 0.5
0 to 0.15
Iron (Fe), % 7.0 to 11
0 to 0.5
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.5
0.1 to 0.5
Nickel (Ni), % 55.9 to 66
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15