MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 707.0 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
1.7 to 3.4
Fatigue Strength, MPa 460
75 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 1250
270 to 300
Tensile Strength: Yield (Proof), MPa 850
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 340
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
210 to 430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 42
26 to 29
Strength to Weight: Bending, points 31
32 to 34
Thermal Diffusivity, mm2/s 3.3
58
Thermal Shock Resistance, points 37
12 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.6
90.5 to 93.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0.2 to 0.4
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 2.0
0 to 0.8
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0 to 1.0
0.4 to 0.6
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0
4.0 to 4.5
Zirconium (Zr), % 0.020 to 0.080
0
Residuals, % 0
0 to 0.15