MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. 201.0 Aluminum

EN 2.4663 nickel belongs to the nickel alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 40
4.4 to 20
Fatigue Strength, MPa 250
120 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 540
290
Tensile Strength: Ultimate (UTS), MPa 780
370 to 470
Tensile Strength: Yield (Proof), MPa 310
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
30 to 33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
87 to 97

Otherwise Unclassified Properties

Base Metal Price, % relative 75
38
Density, g/cm3 8.6
3.1
Embodied Carbon, kg CO2/kg material 11
8.7
Embodied Energy, MJ/kg 140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 230
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 25
33 to 42
Strength to Weight: Bending, points 22
37 to 44
Thermal Diffusivity, mm2/s 3.5
45
Thermal Shock Resistance, points 22
19 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.4
92.1 to 95.1
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
4.0 to 5.2
Iron (Fe), % 0 to 2.0
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 0 to 0.2
0.2 to 0.5
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.2 to 0.6
0.15 to 0.35
Residuals, % 0
0 to 0.1