MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. CC490K Brass

EN 2.4663 nickel belongs to the nickel alloys classification, while CC490K brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 40
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 780
230
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1380
910
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 13
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
16

Otherwise Unclassified Properties

Base Metal Price, % relative 75
30
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 11
2.9
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 350
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
28
Resilience: Unit (Modulus of Resilience), kJ/m3 230
54
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
7.3
Strength to Weight: Bending, points 22
9.5
Thermal Diffusivity, mm2/s 3.5
22
Thermal Shock Resistance, points 22
8.2

Alloy Composition

Aluminum (Al), % 0.7 to 1.4
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
81 to 86
Iron (Fe), % 0 to 2.0
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0 to 2.0
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
7.0 to 9.5