MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C43000 Brass

EN 2.4663 nickel belongs to the nickel alloys classification, while C43000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 40
3.0 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
42
Shear Strength, MPa 540
230 to 410
Tensile Strength: Ultimate (UTS), MPa 780
320 to 710
Tensile Strength: Yield (Proof), MPa 310
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
1000
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 11
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 230
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
10 to 23
Strength to Weight: Bending, points 22
12 to 20
Thermal Diffusivity, mm2/s 3.5
36
Thermal Shock Resistance, points 22
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.4
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
84 to 87
Iron (Fe), % 0 to 2.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
1.7 to 2.7
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5