MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C63000 Bronze

EN 2.4663 nickel belongs to the nickel alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 40
7.9 to 15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
44
Shear Strength, MPa 540
400 to 470
Tensile Strength: Ultimate (UTS), MPa 780
660 to 790
Tensile Strength: Yield (Proof), MPa 310
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1010
230
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 450
440
Thermal Conductivity, W/m-K 13
39
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 11
3.5
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 350
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 230
470 to 640
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
22 to 26
Strength to Weight: Bending, points 22
20 to 23
Thermal Diffusivity, mm2/s 3.5
11
Thermal Shock Resistance, points 22
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.4
9.0 to 11
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
76.8 to 85
Iron (Fe), % 0 to 2.0
2.0 to 4.0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
4.0 to 5.5
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5