MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C67500 Bronze

EN 2.4663 nickel belongs to the nickel alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
14 to 33
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 81
40
Shear Strength, MPa 540
270 to 350
Tensile Strength: Ultimate (UTS), MPa 780
430 to 580
Tensile Strength: Yield (Proof), MPa 310
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
27

Otherwise Unclassified Properties

Base Metal Price, % relative 75
23
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 11
2.8
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 230
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 25
15 to 20
Strength to Weight: Bending, points 22
16 to 19
Thermal Diffusivity, mm2/s 3.5
34
Thermal Shock Resistance, points 22
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.4
0 to 0.25
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
57 to 60
Iron (Fe), % 0 to 2.0
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.2
0.050 to 0.5
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5