MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. C71520 Copper-nickel

EN 2.4665 nickel belongs to the nickel alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 34
10 to 45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
51
Shear Strength, MPa 520
250 to 340
Tensile Strength: Ultimate (UTS), MPa 790
370 to 570
Tensile Strength: Yield (Proof), MPa 300
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 990
260
Melting Completion (Liquidus), °C 1460
1170
Melting Onset (Solidus), °C 1410
1120
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 12
32
Thermal Expansion, µm/m-K 14
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
40
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 9.2
5.0
Embodied Energy, MJ/kg 130
73
Embodied Water, L/kg 270
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 26
12 to 18
Strength to Weight: Bending, points 22
13 to 17
Thermal Diffusivity, mm2/s 3.2
8.9
Thermal Shock Resistance, points 20
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0 to 0.050
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
65 to 71.6
Iron (Fe), % 17 to 20
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
28 to 33
Phosphorus (P), % 0 to 0.020
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5