MakeItFrom.com
Menu (ESC)

EN 2.4669 Nickel vs. 6105 Aluminum

EN 2.4669 nickel belongs to the nickel alloys classification, while 6105 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4669 nickel and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 16
9.0 to 16
Fatigue Strength, MPa 390
95 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 680
120 to 170
Tensile Strength: Ultimate (UTS), MPa 1110
190 to 280
Tensile Strength: Yield (Proof), MPa 720
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
180 to 190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
100 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 37
20 to 29
Strength to Weight: Bending, points 28
28 to 35
Thermal Diffusivity, mm2/s 3.1
72 to 79
Thermal Shock Resistance, points 33
8.6 to 12

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
97.2 to 99
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 5.0 to 9.0
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 65.9 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.6 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15