MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. EN AC-43500 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 9.1
4.5 to 13
Fatigue Strength, MPa 120
62 to 100
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 600
220 to 300
Tensile Strength: Yield (Proof), MPa 260
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 350
550
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 9.1
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 160
130 to 200
Stiffness to Weight: Axial, points 15
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21
24 to 33
Strength to Weight: Bending, points 20
32 to 39
Thermal Diffusivity, mm2/s 3.7
60
Thermal Shock Resistance, points 14
10 to 14

Alloy Composition

Aluminum (Al), % 0
86.4 to 90.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 0.5
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
9.0 to 11.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15