MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. Grade 9 Titanium

EN 2.4680 cast nickel belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 9.1
11 to 17
Fatigue Strength, MPa 120
330 to 480
Poisson's Ratio 0.26
0.32
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 600
700 to 960
Tensile Strength: Yield (Proof), MPa 260
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 350
410
Maximum Temperature: Mechanical, °C 1050
330
Melting Completion (Liquidus), °C 1360
1640
Melting Onset (Solidus), °C 1320
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 14
8.1
Thermal Expansion, µm/m-K 15
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 9.1
36
Embodied Energy, MJ/kg 130
580
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1380 to 3220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21
43 to 60
Strength to Weight: Bending, points 20
39 to 48
Thermal Diffusivity, mm2/s 3.7
3.3
Thermal Shock Resistance, points 14
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 48 to 52
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4