MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. S43932 Stainless Steel

EN 2.4816 nickel belongs to the nickel alloys classification, while S43932 stainless steel belongs to the iron alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 470
300
Tensile Strength: Ultimate (UTS), MPa 700
460
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Mechanical, °C 1150
890
Melting Completion (Liquidus), °C 1370
1440
Melting Onset (Solidus), °C 1320
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 130
40
Embodied Water, L/kg 260
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
96
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 3.8
6.3
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.15
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 14 to 17
17 to 19
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 6.0 to 10
76.7 to 83
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 72 to 80
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.3
0.2 to 0.75