MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. CC490K Brass

EN 2.4851 nickel belongs to the nickel alloys classification, while CC490K brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
76
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 650
230
Tensile Strength: Yield (Proof), MPa 230
110

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1200
160
Melting Completion (Liquidus), °C 1360
980
Melting Onset (Solidus), °C 1310
910
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 49
30
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 8.1
2.9
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 280
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
28
Resilience: Unit (Modulus of Resilience), kJ/m3 130
54
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
7.3
Strength to Weight: Bending, points 20
9.5
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 17
8.2

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
81 to 86
Iron (Fe), % 7.7 to 18
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
7.0 to 9.5