MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. C67000 Bronze

EN 2.4851 nickel belongs to the nickel alloys classification, while C67000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
5.6 to 11
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
42
Shear Strength, MPa 430
390 to 510
Tensile Strength: Ultimate (UTS), MPa 650
660 to 880
Tensile Strength: Yield (Proof), MPa 230
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1200
160
Melting Completion (Liquidus), °C 1360
900
Melting Onset (Solidus), °C 1310
850
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 11
99
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 49
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.9
Embodied Energy, MJ/kg 120
49
Embodied Water, L/kg 280
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 130
560 to 1290
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 22
23 to 31
Strength to Weight: Bending, points 20
21 to 26
Thermal Diffusivity, mm2/s 2.9
30
Thermal Shock Resistance, points 17
21 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.7
3.0 to 6.0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
63 to 68
Iron (Fe), % 7.7 to 18
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5