MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. S46800 Stainless Steel

EN 2.4851 nickel belongs to the nickel alloys classification, while S46800 stainless steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 430
300
Tensile Strength: Ultimate (UTS), MPa 650
470
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1200
920
Melting Completion (Liquidus), °C 1360
1440
Melting Onset (Solidus), °C 1310
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
23
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 49
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 120
37
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
98
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 2.9
6.1
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0 to 0.030
Chromium (Cr), % 21 to 25
18 to 20
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 7.7 to 18
76.5 to 81.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 58 to 63
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.5
0.070 to 0.3