MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. N08320 Stainless Steel

EN 2.4856 nickel belongs to the nickel alloys classification, while N08320 stainless steel belongs to the iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
40
Fatigue Strength, MPa 280
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 570
400
Tensile Strength: Ultimate (UTS), MPa 880
580
Tensile Strength: Yield (Proof), MPa 430
220

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 1000
1100
Melting Completion (Liquidus), °C 1480
1400
Melting Onset (Solidus), °C 1430
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 10
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 80
28
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 14
4.9
Embodied Energy, MJ/kg 190
69
Embodied Water, L/kg 290
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
180
Resilience: Unit (Modulus of Resilience), kJ/m3 440
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 2.7
3.3
Thermal Shock Resistance, points 29
13

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
0 to 0.050
Chromium (Cr), % 20 to 23
21 to 23
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
40.4 to 50
Manganese (Mn), % 0 to 0.5
0 to 2.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
25 to 27
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.4
0