MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. 5040 Aluminum

EN 2.4878 nickel belongs to the nickel alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 13 to 17
5.7 to 6.8
Fatigue Strength, MPa 400 to 410
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 750 to 760
140 to 150
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
240 to 260
Tensile Strength: Yield (Proof), MPa 740 to 780
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1030
190
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 370
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
260 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 41 to 42
24 to 26
Strength to Weight: Bending, points 31
31 to 32
Thermal Diffusivity, mm2/s 2.8
64
Thermal Shock Resistance, points 37 to 39
10 to 11

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
95.2 to 98
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0.1 to 0.3
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 0.5
0.9 to 1.4
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.0070
0
Tantalum (Ta), % 0 to 0.050
0
Titanium (Ti), % 2.8 to 3.2
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0.030 to 0.070
0
Residuals, % 0
0 to 0.15

Comparable Variants