MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. C84000 Brass

EN 2.4878 nickel belongs to the nickel alloys classification, while C84000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13 to 17
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
250
Tensile Strength: Yield (Proof), MPa 740 to 780
140

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1370
1040
Melting Onset (Solidus), °C 1320
940
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 370
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 41 to 42
8.2
Strength to Weight: Bending, points 31
10
Thermal Diffusivity, mm2/s 2.8
22
Thermal Shock Resistance, points 37 to 39
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0.010 to 0.015
0 to 0.1
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
82 to 89
Iron (Fe), % 0 to 1.0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.5
0 to 0.010
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0.5 to 2.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0070
0.1 to 0.65
Tantalum (Ta), % 0 to 0.050
0
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 2.8 to 3.2
0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0.030 to 0.070
0 to 0.1
Residuals, % 0
0 to 0.7