MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C40500 Penny Bronze

EN 2.4951 nickel belongs to the nickel alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
3.0 to 49
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 500
210 to 310
Tensile Strength: Ultimate (UTS), MPa 750
270 to 540
Tensile Strength: Yield (Proof), MPa 270
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1150
190
Melting Completion (Liquidus), °C 1360
1060
Melting Onset (Solidus), °C 1310
1020
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
42

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 9.3
2.7
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
8.5 to 17
Strength to Weight: Bending, points 22
10 to 17
Thermal Diffusivity, mm2/s 3.1
48
Thermal Shock Resistance, points 23
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 0 to 0.5
94 to 96
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5