MakeItFrom.com
Menu (ESC)

EN 2.4951 Nickel vs. C82500 Copper

EN 2.4951 nickel belongs to the nickel alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4951 nickel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 750
550 to 1100
Tensile Strength: Yield (Proof), MPa 270
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 1150
280
Melting Completion (Liquidus), °C 1360
980
Melting Onset (Solidus), °C 1310
860
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
21

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 9.3
10
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 190
400 to 4000
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
18 to 35
Strength to Weight: Bending, points 22
17 to 27
Thermal Diffusivity, mm2/s 3.1
38
Thermal Shock Resistance, points 23
19 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.3
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 0 to 5.0
0.15 to 0.7
Copper (Cu), % 0 to 0.5
95.3 to 97.8
Iron (Fe), % 0 to 5.0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65.4 to 81.7
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.2 to 0.6
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5