MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. EN 1.4961 Stainless Steel

EN 2.4952 nickel belongs to the nickel alloys classification, while EN 1.4961 stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
39
Fatigue Strength, MPa 370
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 700
420
Tensile Strength: Ultimate (UTS), MPa 1150
610
Tensile Strength: Yield (Proof), MPa 670
220

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
890
Melting Completion (Liquidus), °C 1350
1430
Melting Onset (Solidus), °C 1300
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
21
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 9.8
4.0
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 290
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 29
20
Thermal Diffusivity, mm2/s 3.1
4.3
Thermal Shock Resistance, points 33
14

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
0
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0.040 to 0.1
Chromium (Cr), % 18 to 21
15 to 17
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
65.6 to 72.3
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 65 to 79.2
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 1.8 to 2.7
0