MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. C19400 Copper

EN 2.4952 nickel belongs to the nickel alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
2.3 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 700
210 to 300
Tensile Strength: Ultimate (UTS), MPa 1150
310 to 630
Tensile Strength: Yield (Proof), MPa 670
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1350
1090
Melting Onset (Solidus), °C 1300
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.8
2.6
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
41 to 1140
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 38
9.7 to 20
Strength to Weight: Bending, points 29
11 to 18
Thermal Diffusivity, mm2/s 3.1
75
Thermal Shock Resistance, points 33
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.8
0
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
96.8 to 97.8
Iron (Fe), % 0 to 1.5
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0.015 to 0.15
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2