MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. C95300 Bronze

EN 2.4952 nickel belongs to the nickel alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
14 to 25
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 1150
520 to 610
Tensile Strength: Yield (Proof), MPa 670
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1350
1050
Melting Onset (Solidus), °C 1300
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 12
63
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 9.8
3.1
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
170 to 420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 38
17 to 21
Strength to Weight: Bending, points 29
17 to 19
Thermal Diffusivity, mm2/s 3.1
17
Thermal Shock Resistance, points 33
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.8
9.0 to 11
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
86.5 to 90.2
Iron (Fe), % 0 to 1.5
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Residuals, % 0
0 to 1.0