MakeItFrom.com
Menu (ESC)

EN 2.4964 Cobalt vs. 383.0 Aluminum

EN 2.4964 cobalt belongs to the cobalt alloys classification, while 383.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4964 cobalt and the bottom bar is 383.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
73
Elongation at Break, % 40
3.5
Fatigue Strength, MPa 220
150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
28
Tensile Strength: Ultimate (UTS), MPa 960
280
Tensile Strength: Yield (Proof), MPa 390
150

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Melting Completion (Liquidus), °C 1630
580
Melting Onset (Solidus), °C 1550
540
Specific Heat Capacity, J/kg-K 400
880
Thermal Conductivity, W/m-K 15
96
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
74

Otherwise Unclassified Properties

Density, g/cm3 9.6
2.8
Embodied Carbon, kg CO2/kg material 9.8
7.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 450
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 310
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 340
150
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 21
50
Strength to Weight: Axial, points 28
28
Strength to Weight: Bending, points 23
34
Thermal Diffusivity, mm2/s 3.9
39
Thermal Shock Resistance, points 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
79.7 to 88.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 46.4 to 58
0
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 0 to 3.0
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 9.0 to 11
0 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
9.5 to 11.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 14 to 16
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5