MakeItFrom.com
Menu (ESC)

EN 2.4964 Cobalt vs. 443.0 Aluminum

EN 2.4964 cobalt belongs to the cobalt alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4964 cobalt and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 40
5.6
Fatigue Strength, MPa 220
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
27
Tensile Strength: Ultimate (UTS), MPa 960
150
Tensile Strength: Yield (Proof), MPa 390
65

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Melting Completion (Liquidus), °C 1630
630
Melting Onset (Solidus), °C 1550
580
Specific Heat Capacity, J/kg-K 400
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
130

Otherwise Unclassified Properties

Density, g/cm3 9.6
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 450
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 310
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 340
30
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 21
52
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 3.9
61
Thermal Shock Resistance, points 25
6.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.7 to 95.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0 to 0.25
Cobalt (Co), % 46.4 to 58
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 0 to 3.0
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 14 to 16
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35