MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. 6014 Aluminum

Both EN AC-21100 aluminum and 6014 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 6.2 to 7.3
9.1 to 17
Fatigue Strength, MPa 79 to 87
43 to 79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340 to 350
160 to 260
Tensile Strength: Yield (Proof), MPa 210 to 240
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
53
Electrical Conductivity: Equal Weight (Specific), % IACS 100
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
22
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 31 to 33
16 to 26
Strength to Weight: Bending, points 36 to 37
24 to 33
Thermal Diffusivity, mm2/s 48
83
Thermal Shock Resistance, points 15
7.0 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 4.2 to 5.2
0 to 0.25
Iron (Fe), % 0 to 0.19
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.55
0.050 to 0.2
Silicon (Si), % 0 to 0.18
0.3 to 0.6
Titanium (Ti), % 0.15 to 0.3
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 0.1
Residuals, % 0 to 0.1
0 to 0.15

Comparable Variants