MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. 6018 Aluminum

Both EN AC-21100 aluminum and 6018 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 6.2 to 7.3
9.0 to 9.1
Fatigue Strength, MPa 79 to 87
85 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340 to 350
290 to 300
Tensile Strength: Yield (Proof), MPa 210 to 240
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
44
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
48
Strength to Weight: Axial, points 31 to 33
28 to 29
Strength to Weight: Bending, points 36 to 37
34 to 35
Thermal Diffusivity, mm2/s 48
65
Thermal Shock Resistance, points 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.2
0.15 to 0.4
Iron (Fe), % 0 to 0.19
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.55
0.3 to 0.8
Silicon (Si), % 0 to 0.18
0.5 to 1.2
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0 to 0.1
0 to 0.15

Comparable Variants