MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. A360.0 Aluminum

Both EN AC-21100 aluminum and A360.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
75
Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 6.2 to 7.3
1.6 to 5.0
Fatigue Strength, MPa 79 to 87
82 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 340 to 350
180 to 320
Tensile Strength: Yield (Proof), MPa 210 to 240
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 670
680
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
30
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 31 to 33
19 to 34
Strength to Weight: Bending, points 36 to 37
27 to 39
Thermal Diffusivity, mm2/s 48
48
Thermal Shock Resistance, points 15
8.5 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
85.8 to 90.6
Copper (Cu), % 4.2 to 5.2
0 to 0.6
Iron (Fe), % 0 to 0.19
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.18
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0 to 0.5
Residuals, % 0 to 0.1
0 to 0.25

Comparable Variants