MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. AWS E383

EN AC-21100 aluminum belongs to the aluminum alloys classification, while AWS E383 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 6.2 to 7.3
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 340 to 350
580

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Melting Completion (Liquidus), °C 670
1420
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1150
240

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
20
Strength to Weight: Bending, points 36 to 37
19
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 15
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26.5 to 29
Copper (Cu), % 4.2 to 5.2
0.6 to 1.5
Iron (Fe), % 0 to 0.19
28.8 to 39.2
Manganese (Mn), % 0 to 0.55
0.5 to 2.5
Molybdenum (Mo), % 0
3.2 to 4.2
Nickel (Ni), % 0
30 to 33
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.18
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0