MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. Sintered 6061 Aluminum

Both EN AC-21100 aluminum and sintered 6061 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 6.2 to 7.3
0.5 to 6.0
Fatigue Strength, MPa 79 to 87
32 to 62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 340 to 350
83 to 210
Tensile Strength: Yield (Proof), MPa 210 to 240
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 550
610
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
52
Electrical Conductivity: Equal Weight (Specific), % IACS 100
170

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
28 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 31 to 33
8.6 to 21
Strength to Weight: Bending, points 36 to 37
16 to 29
Thermal Diffusivity, mm2/s 48
81
Thermal Shock Resistance, points 15
3.8 to 9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
96 to 99.4
Copper (Cu), % 4.2 to 5.2
0 to 0.5
Iron (Fe), % 0 to 0.19
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 0.55
0
Silicon (Si), % 0 to 0.18
0.2 to 0.8
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0 to 1.5

Comparable Variants