MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. N08221 Nickel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while N08221 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is N08221 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.2 to 7.3
34
Fatigue Strength, MPa 79 to 87
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 340 to 350
610
Tensile Strength: Yield (Proof), MPa 210 to 240
270

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 670
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
44
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
21
Strength to Weight: Bending, points 36 to 37
19
Thermal Shock Resistance, points 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
0 to 0.2
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 4.2 to 5.2
1.5 to 3.0
Iron (Fe), % 0 to 0.19
22 to 33.9
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.5
Nickel (Ni), % 0
39 to 46
Silicon (Si), % 0 to 0.18
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.3
0.6 to 1.0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0